Exercise 19

(a) Show that two parallel planes are either identical or they never intersect.
(b) How do two nonparallel planes intersect?

Solution

Part (a)
Suppose that two planes are parallel. Then they both have the same normal vector $\mathbf{n}=\left(n_{x}, n_{y}, n_{z}\right)$. Let $\mathbf{r}_{1}=\left(x_{1}, y_{1}, z_{1}\right)$ be the position vector for a point in one plane and let \mathbf{r}_{2} be the position vector for a point in the other plane. The equations for these planes are

$$
\begin{array}{rrr}
\mathbf{n} \cdot\left(\mathbf{r}-\mathbf{r}_{1}\right)=0 & \mathbf{n} \cdot\left(\mathbf{r}-\mathbf{r}_{2}\right)=0 \\
\left(n_{x}, n_{y}, n_{z}\right) \cdot\left(x-x_{1}, y-y_{1}, z-z_{1}\right)=0 & \left(n_{x}, n_{y}, n_{z}\right) \cdot\left(x-x_{2}, y-y_{2}, z-z_{2}\right)=0 \\
n_{x}\left(x-x_{1}\right)+n_{y}\left(y-y_{1}\right)+n_{z}\left(z-z_{1}\right)=0 & n_{x}\left(x-x_{2}\right)+n_{y}\left(y-y_{2}\right)+n_{z}\left(z-z_{2}\right)=0 \\
n_{x} x-n_{x} x_{1}+n_{y} y-n_{y} y_{1}+n_{z} z-n_{z} z_{1}=0 & n_{x} x-n_{x} x_{2}+n_{y} y-n_{y} y_{2}+n_{z} z-n_{z} z_{2}=0 \\
n_{x} x+n_{y} y+n_{z} z=n_{x} x_{1}+n_{y} y_{1}+n_{z} z_{1} & n_{x} x+n_{y} y+n_{z} z=n_{x} x_{2}+n_{y} y_{2}+n_{z} z_{2} .
\end{array}
$$

If $\left(x_{1}, y_{1}, z_{1}\right)=\left(x_{2}, y_{2}, z_{2}\right)$, then the planes are identical. Otherwise, they will never intersect because

$$
n_{x} x_{1}+n_{y} y_{1}+n_{z} z_{1} \neq n_{x} x_{2}+n_{y} y_{2}+n_{z} z_{2} .
$$

Part (b)

The intersection of two nonparallel planes is a straight line.

